Теория симбиогенеза.
Происхождение эукариотических митохондрий и хлоропластов.

Значение и основное содержание. История вопроса. Доказательства.
Затруднения. Объяснительные и предсказательные свойства. На главную.
Введение

Необходимо подчеркнуть, что любое воссоздание хода эволюции - почти всегда занятие умозрительное. Даже когда есть полный палеонтологический материал - например, серия остатков какой то группы из последовательных слоев, как в случае, скажем, лошадей - всегда его можно интерпретировать по-разному. А тем более далеки от фактической основы рассуждения на тему о происхождении царств, подцарств и т.п. - никаких прямых палеонтологических свидетельств тому, кто от кого произошел, мы в этих случаях не получим. Поэтому такое теоретизирование многим кажется пустым занятием. Однако если нам удается создать непротиворечивую теорию, пусть даже чисто логически обоснованную - мы часто сталкиваемся с удивительным ее свойством. Хорошая теория обладает предсказательной силой. Она позволяет объяснить ранее необъяснимые явления; предсказать новые открытия до того, как они сделаны; и, может быть, самое главное - указать направление поисков для того, чтобы эти открытия сделать. Именно о такой теории ниже и пойдет речь.


1.Теория симбиогенеза: значение и основное содержание

"Теория симбиогенеза всесильна, потому что она верна."

В большинстве курсов биологии в качестве одного из основных признаков отличия прокариот от эукариот называется наличие у последних двухмембранных органелл (митохондрий и пластид). Эти органеллы, помимо двойной мембраны, имеют еще целый ряд характерных признаков, которые выделяют их среди остальных клеточных мембранных образований. Вопрос их происхождения неразрывно связан с вопросом происхождения эукариот. Ответ на этот вопрос дает теория симбиогенеза.
Итак, согласно этой теории, митохондрии и хлоропласты произошли от симбиотических прокариотических организмов, захваченных протоэукариотом в результате фагоцитоза. Этот протоэукариот, о видимому, представлял собой амебоидный гетеротрофный, анаэробный организм с уже развитыми эукариотическими признаками.
Что же вызвало такой поворот эволюционных событий? Это становится понятным, если учитывать обстоятельства существования жизни в то время. Первые вероятные остатки эукариот имеют возраст около 1,5 млрд. лет. Содержание кислорода в атмосфере тогда составляло менее О,1% от современного. В какой-то момент биологической эволюции (когда, точно не известно) возник фотосинтез. Фотосинтетиками были, конечно, прокариоты: цианобактерии и другие группы фототрофных бактерий. Строматолиты - камни из осажденных слоев извести, свидетельства фототрофных бактериальных сообществ, появились более 2 млрд. лет назад (они похожи на современные, которые кое-где образуют цианобактерии). До этого времени атмосфера была бескислородной; с какого-то момента начал накапливаться кислород. Его накопление создало большие проблемы. Он химически активен и, в сущности, ядовит. Пришлось изобретать способы защиты, в т.ч. биохимические (возможно, один из них - биолюминесценция). Обезвреживать его научились многие прокариоты (хотя значительная часть их осталась строгими анаэробами - для них и сейчас кислород является ядом). Но некоторые пошли дальше - стали использовать этот яд для окисления субстратов с получением энергии. Возник аэробный метаболизм.
Среди эукариот строгих анаэробов почти нет. Но это - не их заслуга: биохимически отупев на почве хищничества, они украли изобретение прокариот. Сделали они это, закабалив самих прокариот - превратив их в своих внутриклеточных симбионтов.
Еще 25-30 лет назад в нашей стране теория симбиогенеза подвергалась осмеянию и считалась ересью. Но на сегодняшний день она может считаться общепризнанной, хотя и сегодня она сталкивается с рядом затруднений.
2.Теория симбиогенеза: история вопроса

Идея о том, что некоторые органоиды клетки могут быть симбиотическими организмами, возникла в начале века на отечественной почве. Автор ее - хранитель Зоологического кабинета Казанского университета К.С. Мережковский. Этому предшествовало установление Фаминцыным и Барановским симбиотической природы лишайников (1867). То, что лишайники - продукт симбиоза, некоторые ботаники не признавали и через 50 лет! Очень уж непривычно, что такой "знакомый", милый сердцу организм - не "сам по себе", а сращение двух других организмов. Та же ситуация имела место и с идеями Мережковского. Хлоропласты - не части клетки, а самостоятельные организмы?! Наши клетки напичканы бактериями - митохондриями?! И дышим-то не мы сами, а они?! Эту теорию не признавали тоже 50 лет. Однако потом появились последователи - уже в Америке; приоритет был, как это бывало не раз, утрачен.
Почему теория победила? "Всесильна, потому что верна"?. На самом деле - потому, что накопились новые данные.

3. Теория симбиогенеза: доказательства.
Точку зрения на митохондрии и хлоропласты, как на приобретенные клеткой симбиотические бактерии подтверждает ряд особенностей строения и физиологии этих органелл:
1)У них есть все признаки "элементарной клетки":
  • полностью замкнутая мембрана;
  • генетический материал - ДНК;
  • свой аппарат синтеза белка - рибосомы и др.;
  • размножаются делением (причем делятся иногда независимо от деления клетки).

  • 2)У них есть признаки сходства с бактериями:
  • ДНК обычно кольцевая, не связана с гистонами;
  • рибосомы прокариотические - 70S-типа и мельче. Нет 5,8S-рРНК,характерной для эукариот;
  • рибосомы чувствительны к тем же антибиотикам, что и бактериальные.


  • 4. Теория симбиогенеза: затруднения

    У хлоропластов и митохондрий нет клеточной стенки, характерной для предполагаемых предковых групп. Но ее нет или почти нет и у многих современных эндосимбионтов. Видимо, она теряется для облегчения обмена между симбионтом и хозяином. Это как раз затруднение из легких. Кроме того, у водоросли Cyanophora paradoxa найдена "промежуточные форма" - так называемые цианеллы. Эти органоиды (симбионты?) имеют редуцированную клеточную стенку, почему их и считают цианобактериями. В то же время они имеют размер генома, в 10 раз меньший, чем бактериальный (что характерно для хлоропластов) и не размножаются вне клетки-хозяина. Примечательно, что Cyanophora - жгутиковая водоросль, а ее цианеллы больше всего напоминают хлоропласты красных водорослей, которые жгутиков всегда лишены.
    А вот затруднение из трудных. Многие белки митохондрий и хлоропластов кодируются ядерными генами, синтезируются на рибосомах цитоплазмы и только потом доставляются аж сквозь две мембраны в органеллу! Как так могло получиться? Единственное объяснение в рамках симбиогенеза - часть генов органелл переместилась в ядро. Еще двадцать лет назад казалось, что это -чистый бред. Потом накопились данные о мобильных генетических элементах (одним из этапов знакомства с ними научной общественности в нашей стране стала книга Р.Б. Хесина "Непостоянство генома"). Гены меняют места в хромосомах, вирусы встраиваются в геномы бактерий и эукариот и т.п.. Процесс перемещения генов в ядро стал казаться более вероятным, но ничем не был доказан. Однако позднее появились и свидетельства того, что такой процесс, видимо, действительно имел место. Помогли белки из нескольких аминокислотных цепей. Один из таких белков митохондрий - протонная АТФ-синтетаза - состоит из 8 субъединиц (пептидных цепей). И вот оказалось, что у дрожжей 4 закодированы в митохондриях, а 4 - в ядре. Это уже само по себе подозрительно! А у человека все 8 цепей закодированы в ядре. Значит, в ходе эволюции эукариот от общих предков дрожжей и человека гены переместились в ядро - значит, это в принципе возможно -ура!
    Среди современных прокариот паразит растений Agrobacterium tumifaciens, проникая в клетки, встраивает свои плазмиды в геном хозяина, вызывая рак - трансформацию клеток. Этот пример доказывает возможность переноса генетического материала из прокариотической клетки в ядро эукариота-хозяина.

    5. Теория симбиогенеза: объяснительные и предсказательные свойства

    С помощью теории симбиогенеза были предсказаны и/или объяснены многие признаки митохондрий и хлоропластов. Некоторые из предсказаний, которые рассмотрены ниже, сейчас - скорее доказательства: они подтвердились.
    Прежде всего, теория симбиогенеза объясняет наличие двойной мембраны и ее свойства. Приобретение двойной мембраны - результат фагоцитоза; наружная мембрана - бывшая мембрана пищеварительной вакуоли и, таким образом, принадлежит хозяину, а не эндосимбионту. Хотя сейчас эта мембрана воспроизводится вместе с органоидом, как ни странно, по липидному составу она больше похожа на мембрану эндоплазматической сети клетки, чем на внутреннюю мембрану самого органоида.
    Объясняет наша теория и различия метаболизма цитоплазмы и органоидов. Анаэроб - протоэукариот приобрел бактерий, которые уже стали аэробными (митохондрии); гетеротроф приобрел фототрофов (хлоропласты).
    Теория симбиогенеза предсказывает гомологию (сходство) последовательностей ДНК органелл и бактерий. Это предсказание с появлением методов секвенирования блестяще подтвердилось. Например, по нуклеотидным последовательностям 16S-рибосомальной РНК хлоропласты наиболее близки к цианобактериям, а митохондрии - к пурпурным бактериям. И те, и другие рРНК резко отличаются от рРНК эукариотических рибосом цитоплазмы хозяев. Наконец, теория симбиогенеза предсказывает возможность множественного (неоднократного) приобретения симбионтов и вероятность нахождения нескольких разных свободноживущих бактерий, похожих на их предков. Видимо, эта возможность была реализована в случае хлоропластов.
    Здесь надо отметить, что в большинстве книг по цитологии ограни- чиваются описанием хлоропластов зеленых растений: их-то мы себе и представляем, когда речь идет про эти органоиды. Сходное строение имеют хлоропласты зеленых водорослей. А вот у других водорослей они могут существенно отличаться как по строению мембранных частей, так и по набору пигментов.
    У красных водорослей хлоропласты содержат хлорофилл а и фикобилины - белковые пигменты, собранные в особые тельца - фикобилисомы; мембранные мешочки - ламеллы - расположены в них поодиночке. По этим признакам они наиболее (из всех хлоропластов) схожи с цианобактериями, прямыми потомками которых, видимо, и являются.
    У зеленых водорослей и высших растений есть хлорофиллы a и b; нет фикобилинов; ламеллы собраны в стопки - граны. От типичных цианобактерий они по этим признакам отличаются. И вот в 70-е г.г. нашего века был подробно описан замечательный прокариот-фотоавтотроф - Prochloron. Он был известен и ранее - это симбионт асцидий-дидемнид, у которых он живет не внутри клеток, а в клоакальной полости. (Дидемниды - мешковидные, прозрачные колониальные существа, обитающие на коралловых рифах. Из-за симбионтов имеют ярко-зеленую окраску. Могут медленно двигаться, выбирая освещенные участки. Симбионты получают от хозяина защиту и необходимые им ростовые вещества, а в ответ делятся с ним продуктами фотосинтеза и, видимо, аминокислотами - прохлорон способен к азотфиксации.) Оказалось, что прохлорон - скорее всего, цианобактерия (хотя некоторые ученые выделяют его в особый отдел Prochlorophyta вместе с позднее открытой свободноживущей нитчатой бактерией Prochlorothryx), но... у него нет фикобилинов; есть хлорофиллы a,b; есть стопки ламелл. Таким образом, это - "модель" предка хлоропластов высших растений!
    "Модели" хлоропластов других водорослей (например, бурых и золотистых), возможно, еще будут открыты. Так и что и здесь теория симбиогенеза нашла подтверждения.

    К началу. На главную.

    Hosted by uCoz